8. PROBABILITY

Quick Review

1. An experiment which can be repeated any number of times under essentially identical conditions and which is associated with a set of known results, is called a random experiment or trial if the result of any single repetition of experiment is not certain and is any one of the associated set.
2. The result of any single repetition of a random experiment is called an elementary event or simple event.
3. Elementary events are said to be equally likely if no event has preference over other events.
4. A combination of one or more elementary events in a trial is called an event.
5. The favourable cases to a particular event of an experiment are called successes and the remaining cases are called failures with respect to that event.
6. If there are n exhaustive equally likely elementary events in a trial and m of them are favourable to an event A , then m / n is called the probability of A . It is denoted by $\mathrm{P}(\mathrm{A})$.
7. If a trial is conducted n times and m of them are favourable to an event A, then m / n is called relative frequency of A and is denoted by $R(A)$. If $\underset{n \rightarrow \infty}{L t} R(A)$ exists, then the limit is called probability of A.
8. The set of all possible outcomes (results) in a trial is called sample space for the trial. It is denoted by S . The elements of S are called sample points.
9. Let S be a sample space of a random experiment. Every subset of S is called an event.
10. Let S be a sample space. The event \varnothing is called impossible event and the event S is called certain event in S .
11. Two events A, B in a sample space S are said to be disjoint or mutually exclusive if $\mathrm{A} \cap \mathrm{B}=\varnothing$.
12. The events $A_{1}, A_{2}, \ldots, A_{n}$ in a sample space S are said to be mutually exclusive or pairwise disjoint if every pair of the events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}$ are disjoint.
13. Two events A, B in a sample space S are said to be exhaustive if $A \cup B=S$.
14. The events $A_{1}, A_{2}, \ldots, A_{n}$ in a sample space S are said to be exhaustive if $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S$.
15. Two events A, B in a sample space S are said to be complementary if $A \cup B=S, A \cap B=\varnothing$.
16. Let A be an event in a sample space S. An event B in S is said to be complement of A if A, B are complementary in S. The complement B of A is denoted by \bar{A}.
17. The complement of an event A in a sample space S is unique. If \bar{A} is the complement of A then $A \cup \bar{A}=S, A \cap \bar{A}=\varnothing$ and $\overline{(\bar{A})}=A$.
18. Let S be a finite sample space. A real valued function $P: P(S) \rightarrow R$ is said to be a probability function on S if (i) $P(A) \geq 0, \forall A \in P(S)$ (ii) $P(S)=1$ (iii) $A, B \in P(S), A \cap B=\varnothing \Rightarrow P(A \cup B)=$ $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
19. Let S be a finite sample space and P be a probability function on S. If A is an event in S then $\mathrm{P}(\mathrm{A})$, the image of A , is called probability of A .
20. If $A_{1}, A_{2}, \ldots, A_{n}$ are n mutually exclusive events in a sample space S, then
$\mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{A}_{\mathrm{n}}\right)$.
21. $P(\varnothing)=0$
22. If A is an event in a sample space S, then $P(\bar{A})=1-P(A)$.
23. Let A, B be two events in a sample space S. If $A \subseteq B$, then $P(A) \leq P(B)$.
24. If A is an event in a sample space S , then $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$.
25. Let S be a sample space containing n sample points. If E is an elementary event in S, then $P(E)=$ 1/n.
26. Let S be a sample space containing n sample points. If A is an event in S containing m sample points, then $\mathrm{P}(\mathrm{A})=\mathrm{m} / \mathrm{n}$.
27. If A is an event in a sample space S, then $P(A)=\frac{n(A)}{n(S)}$, where $n(A)$ is the number of sample points in A and $n(S)$ is the number of sample points in S.
28. If A is an event in a sample space S , then the ratio $\mathrm{P}(\mathrm{A}): \mathrm{P}(\overline{\mathrm{A}})$ is called the odds in favour to A and $\mathrm{P}(\overline{\mathrm{A}}): \mathrm{P}(\mathrm{A})$ is called the odds against to A .
29. Addition theorem on probability : If A, B are two events in a sample space S, then $P(A \cup B)=$ $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.
30. If A, B are two events in a sample space S, then $P(B-A)=P(B)-P(A \cap B)$ and $P(A-B)=$ $P(A)-P(A \cap B)$.
31. If A, B, C are three events in a sample space S, then $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)$ $-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{A})+\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$.
32. If A, B are two events in a sample space, then the event of happening of B after the event A happening is called conditional event. It is denoted by $\mathrm{B} \mid \mathrm{A}$.
33. If A, B are two events in a sample space S and $P(A) \neq 0$, then the probability of B after the event A has occurred is called conditional probability of B given A. It is denoted by $P(B \mid A)$.
34. If A, B are two events in a sample space S such that $P(A) \neq 0$, then $P(B \mid A)=\frac{n(A \cap B)}{n(A)}$.
35. Multiplication theorem of probability : Let A, B be two events in a sample space S such that $\mathrm{P}(\mathrm{A}) \neq 0, \mathrm{P}(\mathrm{B}) \neq 0$. Then
i) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
ii) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
36. Two events A, B in a sample space S are said to be independent if $P(B \mid A)=P(B)$.
37. Two events A, B in a sample space S are independent iff $P(A \cap B)=P(A) P(B)$.
38. The events $A_{1}, A_{2}, \ldots, A_{n}$ are independent iff $P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{n}\right)$.
39. If A, B are two independent events in a sample space S, then (i) \bar{A}, B are independent (ii) A, \bar{B} are independent, (iii) \bar{A}, \bar{B} are independent.
40. If $A_{1}, A_{2}, \ldots, A_{n}$ are independent events in a sample space S, then $\overline{\mathrm{A}}_{1}, \overline{\mathrm{~A}}_{2}, \ldots, \overline{\mathrm{~A}}_{n}$ are also independent events.
41. If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive and exhaustive events in a sample space S such that $P\left(A_{i}\right)>0$ for $i=1,2, \ldots, n$ and E is any event, then $P(E)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(E \mid A_{i}\right)$.
42. If A_{1}, A_{2} are two mutually exclusive and exhaustive events and E is any event then $\mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{E} \mid \mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{E} \mid \mathrm{A}_{2}\right)$.
43. Baye's theorem : If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive and exhaustive events in a sample space S such that $P\left(A_{i}\right)>0$ for $i=1,2, \ldots, n$ and E is any event with $P(E)>0$, then
$P\left(A_{k} \mid E\right)=\frac{P\left(A_{k}\right) P\left(E \mid A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(E \mid A_{i}\right)}$ for $K=1,2, \ldots, n$.
44. When two dice are thrown the number of ways of getting a total r is (i) $r-1$, if $2 \leq r \leq 7$ (ii) $13-r$, if $8 \leq r \leq 12$.
45. When three dice are thrown the number of ways of getting a total r is 27 , if $r=10$ or 11 .
46. If n letters are put at random in the n addressed envelopes, the probability that
(i) all the letters are in right envelopes $=1 / n$!
(ii) atleast one letter may be in wrongly addressed envelope $=1-1 / \mathrm{n}$!
47. If A and B are two finite sets and if a mapping is selected at random from the set of all mappings from A into B, then the probability that the mapping is a
(i) one one function is $\frac{{ }^{n(B)} P_{n(A)}}{n(B)^{n(A)}}$.
(ii) constant function is $\frac{n(B)}{n(B)^{n(A)}}$.
(iii) one one onto function is $\frac{n(A)!}{n(B)^{n(A)}}$, if $n(A)=n(B)$.
48. Out of n pairs of shoes, if r shoes are selected at random, then the probability that i) there is no pair is $\frac{{ }^{n} C_{r} 2^{r}}{{ }^{2 n} C_{r}}$.
ii) there is atleast one pair is $1-\frac{{ }^{n} C_{r} 2^{r}}{{ }^{2 n} C_{r}}$.
49. If p, q are the probabilities of success, failure of a game in which A, B play then
i) probability A's win $=\frac{p}{1-q^{2}}$
ii) probability of B's win $=\frac{q p}{1-q^{2}}$.
50. If p, q are the probabilities of success, failure of a game in which A, B, C play then
i) probability of A's win $=\frac{p}{1-q^{3}}$
ii) probability of B's win $=\frac{q p}{1-q^{3}}$
iii) probability of C's win $=\frac{q^{2} p}{1-q^{3}}$
